| 起源の場所: | 中国 |
|---|---|
| ブランド名: | MYT |
| 証明: | CNAS、CMA、CAL、ILAC-MRA |
| モデル番号: | DY-150P |
| 文書: | MYT User Manual.pdf |
| 最小注文数量: | 100 |
| 支払条件: | L/C、D/A、D/P、T/T |
| 本体の重量: | 4.4kg(リチウムイオン電池を除く) 4.8kg(リチウムイオン電池含む) | 検出器寸法(mm): | 縦430×横190、高さ180 |
|---|---|---|---|
| バッテリー設定: | 電圧: 21V、容量: 6400mAh、検出器に3時間以上連続的に電力を供給でき、スタンバイ電源供給は8時間以上です。 | 電源アダプタのパラメータ: | 入力電圧 100-240V/AC 50-60Hz、160W;出力電圧 24V/DC |
| ソース: | 電源アダプター/リチウムイオン電池パックの電源 | データインターフェイス: | USBポートがある |
| ソフトウェア機能: | セルフチェックとキャリブレーションをサポートします。少なくとも 100 万のストレージ容量を持つリアルタイムのデータ ストレージ、取得、およびエクスポート機能を提供し、データの追加が可能です。 | 作業環境: | -5℃ ~ 55℃、相対湿度 93%RH 以下、結露なきこと |
portable trace explosive and drug detector
1, Sensor Features
The DY-150P portable explosive and drug detector is a new generation of explosive and drug trace detection and analysis instrument developed and produced by MYT Technology Co., LTD.
This detector employs advanced photoionization high-resolution ion mobility spectrometry technology, utilizing a vacuum ultraviolet photoionization source without radioactive components. It poses no radiation hazards to humans and is easy to maintain, store, and repair. The device features user-friendly operation, one-touch detection, rapid analysis speed, high sensitivity, portability, and strong environmental adaptability. It can quickly and accurately detect various military explosives and civilian homemade explosives (including black powder, fireworks, and five other types). The prohibited substance database can be flexibly expanded to include multiple banned hazardous materials based on user requirements. The system includes self-cleaning functionality for rapid MYT fication of internal components.
The detector is suitable for airport, subway, port, hotel, church, business center, large gathering and other important public activity places for explosion-proof security inspection, trace detection of explosives and other prohibited substances; it can also be used for teaching and scientific research purposes.
2, Qualification
| Can detect 6 types of explosives | TNT (TNT), RDX (RDX), PETN (PETN) Nitroglycerin (NG), nitrate-based explosives (ammonium nitrate, AN), and black powder (sulfur, BP) may also be mixed with prohibited substances as required by users. |
|---|---|
| Core technology | Non-radioactive photoionization high-resolution ion mobility spectrometry (PIMS) |
| Sample mode | Wipe and sample |
| Sensitivity | Nak class (ng, 10-9 g) |
| Alarm method | Sound + display sample information + color indicator light |
| Parsing time | <5 seconds (s) |
| Cold start time | <15 minutes (min) |
| False positive rate | ≤ 1% |
| Display screen | 3.5 TFT color LCD touch screen |
| Relevance ratio | ≥99% |
| Tyrant detection limit | <1 nanogram (ng) |
| Overload recovery time | ≤1 minute (min) |
| Probe mode switching time | ≤10 minutes (min) |
| Work environment | -5℃ to 55℃, with relative humidity ≤93%RH and non-condensation |
|---|---|
| Software function | Supports self-check and calibration; provides real-time data storage, retrieval, and export capabilities with a storage capacity of at least 1 million, and allows data addition. |
| Data interface | Has a USB port |
| Wi-Fi function | It supports remote monitoring of detector operation status and remote downloading of alarm data |
| Source | Power adapter/lithium-ion battery pack power |
| Power adapter parameters | Input voltage 100-240V/AC 50-60Hz, 160W; output voltage 24V/DC |
| Battery Settings | Voltage: 21V, capacity: 6400mAh, can power the detector continuously for more than 3 hours, standby power supply is ≥8 hours |
| Dimensions of the detector (mm) | 430 Long * 190, High * 180, Wide |
| Weight of the main body | 4.4 kg (excluding lithium-ion batteries); 4.8 kg (including lithium-ion batteries) |
3, Basic Working Principle
The detector employs next-generation ion mobility spectrometry technology, as illustrated in Figure 1.2.1. When the sample molecules undergo thermal desorption through the injection system, they enter the ionization zone of the ion mobility tube via the injection channel and are ionized by a non-radioactive ionization source. The ionized molecules transform from neutral to charged ions. These charged ions then pass through the ion gate-controlled reaction zone into the ion mobility region, where they travel under a uniform electric field to the ion reception zone, where they are converted into electrical signals. The weak electrical signals are amplified by an amplifier and transmitted to the data processing system, ultimately forming the detection spectrum of the ion mobility spectrometry.
![]()
Figure 1.2.1 Ion Migration Spectrum Working Principle
The mass-to-charge ratio (m/z) of ions formed from the tested sample molecules varies, resulting in different collision cross-sectional areas. Consequently, ions exhibit distinct migration rates within the migration zone, leading to varying arrival times in the reception zone. Ion mobility spectrometry leverages these differential migration rates to identify specific sample components.
